Verónica Becher

A computable absolutely normal Liouville number

2015, Mathematics of Computation 84 (296), 2939–2952, 2015
Citas: 19
Agregar PDF Importar citas Plots Conexiones

Autor(es)

V. Becher and P. A Heiber and T. A. Slaman

Abstract

We say that a base is an integer s greater than or equal to 2. A real number x is normal to base s if the sequence (sjx: j≥ 0) is uniformly distributed in the unit interval modulo one. By Weyl’s Criterion [11], x is normal to base s if and only if certain harmonic sums associated with (sjx: j≥ 0) grow slowly. Absolute normality is normality to every base.Bugeaud [6] established the existence of absolutely normal Liouville numbers by means of an almost-all argument for an appropriate measure due to Bluhm [3, 4]. The support of this measure is a perfect set, which we call Bluhm’s fractal, all of whose irrational elements are Liouville numbers. The Fourier transform of this measure decays quickly enough to ensure that those harmonic sums grow slowly on a set of measure one. Thus, Bugeaud’s proof exhibits a nonempty set but does not provide a construction of an absolutely normal Liouville number. A real number x is computable if there is a base s and an algorithm to output the digits for the base-s expansion of x, one after the other. In this note we show the following:

Plot de citas

Citas de Scrapping

# Año #Citas Título Autores Journal Editor
1 2015 101 High-precision arithmetic in mathematical physics DH Bailey, JM Borwein  Mathematics, 2015 mdpi.com
2 2018 19 Normal numbers and computer science V Becher, O Carton  Sequences, groups, and number theory, 2018 Springer
3 2301 2 Lacunary sequences in analysis, probability and number theory C Aistleitner, I Berkes, R Tichy  arXiv preprint arXiv:2301.05561, 2023 arxiv.org
4 2018 12 Sequences, groups, and number theory V Berthé, M Rigo 2018 Springer
5 2016 14 Finite state incompressible infinite sequences CS Calude, L Staiger, F Stephan  Information and Computation, 2016 Elsevier
6 2024 0 On Sequential Structures in Incompressible Multidimensional Networks FS Abrahão, K Wehmuth, H Zenil…  Parallel Processing …, 2024 World Scientific
7 2017 9 M. Levin's construction of absolutely normal numbers with very low discrepancy N Alvarez, V Becher  Mathematics of Computation, 2017 ams.org
8 2016 9 Normality and finite-state dimension of Liouville numbers S Nandakumar, SK Vangapelli  Theory of Computing Systems, 2016 Springer
9 2018 5 Liouville, computable, Borel normal and Martin-Löf random numbers CS Calude, L Staiger  Theory of Computing Systems, 2018 Springer
10 2208 0 Real numbers equally compressible in every base S Nandakumar, S Pulari  arXiv preprint arXiv:2208.06340, 2022 arxiv.org
11 2018 2 On incompressible multidimensional networks FS Abrahão, K Wehmuth, H Zenil, A Ziviani  arXiv preprint arXiv …, 2018 arxiv.org
12 2020 1 Liouville numbers and the computational complexity of changing bases SK Jakobsen, JG Simonsen  Beyond the Horizon of Computability: 16th …, 2020 Springer
13 2018 0 Algorithmic information distortions and incompressibility in uniform multidimensional networks FS Abrahão, K Wehmuth, H Zenil, A Ziviani  arXiv preprint arXiv …, 2018 arxiv.org
14 2018 0 2017 EUROPEAN SUMMER MEETING OF THE ASSOCIATION FOR SYMBOLIC LOGIC LOGIC COLLOQUIUM'17 Stockholm, Sweden August 14–20, 2017 M Džamonja  The Bulletin of Symbolic Logic, 2018 JSTOR
15 2017 0 CS Calude, L Staiger 2017 Department of Computer Science …
16 2015 0 An encryption algorithm A Soloi  2015 7th International Conference on Electronics …, 2015 ieeexplore.ieee.org
17 2014 0 Una perspectiva computacional sobre números normales PA Heiber 2014 bibliotecadigital.exactas.uba.ar
18 2018 4 FS Abrahao, K Wehmuth, H Zenil, A Ziviani 2018 Research report
19 2013 2 C Calude, L Staiger 2013 Technical report, Centre for Discrete …
20 0 V Becher, O Carton