Verónica Becher

An example of a computable absolutely normal number

2002, Theoretical Computer Science 270 (1-2), 947-958, 2002
Citas: 98
Importar citas Plots Conexiones

Autor(es)

Verónica Becher and Santiago Figueira

Abstract

The first example of an absolutely normal number was given by Sierpinski in 1916, twenty years before the concept of computability was formalized. In this note we give a recursive reformulation of Sierpinski's construction which produces a computable absolutely normal number.

Plot de citas

Citas de Scrapping

# Año #Citas Título Autores Journal Editor
1 2011 861 Ergodic theory M Einsiedler 2011 Springer
2 2013 858 Information and randomness: an algorithmic perspective CS Calude 2013 books.google.com
3 2008 743 Mathematics by experiment J Borwein, D Bailey 2008 api.taylorfrancis.com
4 2014 67 Algorithmic complexity for short binary strings applied to psychology: a primer N Gauvrit, H Zenil, JP Delahaye…  Behavior research …, 2014 Springer
5 2022 11 Stationary processes and discrete parameter Markov processes R Bhattacharya, EC Waymire 2022 books.google.com
6 2022 12 Emergence and algorithmic information dynamics of systems and observers FS Abrahão, H Zenil  Philosophical Transactions of the …, 2022 royalsocietypublishing.org
7 2006 57 Large alphabets and incompressibility T Gagie  Information Processing Letters, 2006 Elsevier
8 2013 46 A polynomial-time algorithm for computing absolutely normal numbers V Becher, PA Heiber, TA Slaman  Information and Computation, 2013 Elsevier
9 2007 59 Turing's unpublished algorithm for normal numbers V Becher, S Figueira, R Picchi  Theoretical Computer Science, 2007 Elsevier
10 2009 43 A constructive Borel–Cantelli lemma. Constructing orbits with required statistical properties S Galatolo, M Hoyrup, C Rojas  Theoretical Computer Science, 2009 Elsevier
11 2011 31 Mathematical foundations of randomness A Dasgupta  Philosophy of Statistics, 2011 Elsevier
12 2018 16 Normal numbers and computer science V Becher, O Carton  Sequences, groups, and number theory, 2018 Springer
13 2301 1 Lacunary sequences in analysis, probability and number theory C Aistleitner, I Berkes, R Tichy  arXiv preprint arXiv:2301.05561, 2023 arxiv.org
14 2021 6 Computable measure theory and algorithmic randomness M Hoyrup, J Rute  Handbook of Computability and Complexity in Analysis, 2021 Springer
15 1610 15 Computable absolutely Pisot normal numbers MG Madritsch, AM Scheerer, RF Tichy  arXiv preprint arXiv:1610.06388, 2016 arxiv.org
16 2014 22 Number theoretic applications of a class of Cantor series fractal functions. I B Mance  Acta Mathematica Hungarica, 2014 Springer
17 2018 12 Sequences, groups, and number theory V Berthé, M Rigo 2018 Springer
18 2021 6 Algorithmic information distortions in node-aligned and node-unaligned multidimensional networks FS Abrahão, K Wehmuth, H Zenil, A Ziviani  Entropy, 2021 mdpi.com
19 2017 15 Computable absolutely normal numbers and discrepancies AM Scheerer  Mathematics of Computation, 2017 ams.org
20 2009 27 Indifferent sets S Figueira, JS Miller, A Nies  Journal of Logic and Computation, 2009 ieeexplore.ieee.org
21 2006 23 Normal numbers are normal D Khoshnevisan  Clay Mathematics Institute Annual Report, 2006 claymath.org
22 2023 3 Poisson generic sequences N Álvarez, V Becher, M Mereb  … Mathematics Research Notices, 2023 academic.oup.com
23 2016 14 Finite state incompressible infinite sequences CS Calude, L Staiger, F Stephan  Information and Computation, 2016 Elsevier
24 2020 6 Patterns and Probabilities: A Study in Algorithmic Randomness and Computable Learning FZ Blando 2020 search.proquest.com
25 2015 20 Feasible analysis, randomness, and base invariance S Figueira, A Nies  Theory of Computing Systems, 2015 Springer
26 2010 17 Some bridging results and challenges in classical, quantum and computational randomness G Longo, C Palamidessi, T Paul  World Sci, 2010 books.google.com
27 0908 18 Words and transcendence M Waldschmidt  arXiv preprint arXiv:0908.4034, 2009 arxiv.org
28 1701 8 On the continued fraction expansion of absolutely normal numbers AM Scheerer  arXiv preprint arXiv:1701.07979, 2017 arxiv.org
29 2016 9 On dynamical systems for transport logistic and communications AP Buslaev, AG Tatashev  Journal of Mathematics …, 2016 pdfs.semanticscholar.org
30 2012 12 On the expansions of a real number to several integer bases Y Bugeaud  Revista Matemática Iberoamericana, 2012 ems.press
31 2008 17 Measures of complexity for artificial embryogeny T Kowaliw  Proceedings of the 10th annual conference on Genetic …, 2008 dl.acm.org
32 2013 14 Champernowne's number, strong normality, and the X chromosome A Belshaw, P Borwein  … and Analytical Mathematics: In Honor of Jonathan …, 2013 Springer
33 2012 14 Nonnormality of Stoneham constants DH Bailey, JM Borwein  The Ramanujan Journal, 2012 Springer
34 2017 9 M. Levin's construction of absolutely normal numbers with very low discrepancy N Alvarez, V Becher  Mathematics of Computation, 2017 ams.org
35 2012 11 Turing's normal numbers: towards randomness V Becher  Conference on Computability in Europe, 2012 Springer
36 2012 6 Hartmanis-Stearns conjecture on real time and transcendence R Freivalds  … Conference on Teaching and Computational Science, 2012 Springer
37 2015 8 Number theoretic applications of a class of Cantor series fractal functions, II B Li, B Mance  International Journal of Number Theory, 2015 World Scientific
38 2020 3 Quantifying nonrandomness in evolving networks PK Pandey, M Singh  IEEE Transactions on Computational …, 2020 ieeexplore.ieee.org
39 2023 0 Normality, Relativization, and Randomness W Calvert, E Grunner, E Mayordomo, D Turetsky…  arXiv preprint arXiv …, 2023 arxiv.org
40 2010 6 Structural metrics: an epistemology MB Winter 2010 search.proquest.com
41 2013 4 Liouville numbers, Borel normality and algorithmic randomness CS Calude, L Staiger 2013 researchspace.auckland.ac.nz
42 2013 4 An experimental investigation of the normality of irrational algebraic numbers J Nielsen, J Simonsen  Mathematics of Computation, 2013 ams.org
43 2022 0 Algorithmic Complexity in Cognition H Zenil, FS Toscano, N Gauvrit  Methods and Applications of Algorithmic …, 2022 Springer
44 2017 4 Turing and randomness. R Downey 2017 homepages.ecs.vuw.ac.nz
45 2020 2 Methods and applications of algorithmic complexity H Zenil, N Kiani, J Tegnér 2020 Springer
46 2022 0 Methods and Applications of Algorithmic Complexity: Beyond Statistical Lossless Compression H Zenil, FS Toscano, N Gauvrit 2022 books.google.com
47 2010 3 Ergodic theory M Einsiedler, T Ward 2010 Citeseer
48 2007 5 A good number of forms fairly beautyful T Kowaliw 2007 Citeseer
49 2202 0 Poisson generic sequences NAVBM Mereb  arXiv preprint arXiv:2202.01632, 2022 researchgate.net
50 2006 5 Diophantine analysis and words M Waldschmidt  Diophantine analysis and related fields 2006, 2006 webusers.imj-prg.fr
51 2023 1 Transcendence of numbers related to Episturmian words P Kebis 2023 ora.ox.ac.uk
52 2018 2 Fractal analysis of Pi normality C Sevcik  Experimental Mathematics, 2018 Taylor & Francis
53 1702 2 On absolutely normal numbers and their discrepancy estimate V Becher, AM Scheerer, T Slaman  arXiv preprint arXiv:1702.04072, 2017 arxiv.org
54 2013 2 Strong Normality, Modular Normality, and Flat Polynomials: Applications of Probability in Number Theory and Analysis AW Belshaw 2013 summit.sfu.ca
55 1106 3 Assessing cognitive randomness: A kolmogorov complexity approach N Gauvrit, H Zenil, JP Delahaye  arXiv preprint arXiv:1106.3059, 2011 researchgate.net
56 2007 4 An effective Borel-Cantelli lemma. Constructing orbits with required statistical properties S Galatolo, M Hoyrup, C Rojas  arXiv, 2007 Citeseer
57 0708 3 Empirical entropy in context T Gagie  arXiv preprint arXiv:0708.2084, 2007 arxiv.org
58 2014 2 Computability theory, algorithmic randomness and Turing's anticipation. R Downey 2014 books.google.com
59 2018 1 On incompressible multidimensional networks FS Abrahão, K Wehmuth, H Zenil, A Ziviani  arXiv preprint arXiv …, 2018 arxiv.org
60 2004 3 The Theory of Everything and the future of life T Karthik  International Journal of Astrobiology, 2004 cambridge.org
61 2006 6 Propriétés combinatoires et arithmétiques de certaines suites automatiques et substitutives J Albert 2006 theses.hal.science
62 2022 0 An Introduction to Dynamical Systems R Bhattacharya, E Waymire  Stationary Processes and Discrete …, 2022 Springer
63 2008 7 Caractérisations de l'aléatoire par les jeux: impredictibilité et stochasticité L Bienvenu 2008 Citeseer
64 2004 0 The “cardinality of extended solution set” criterion for establishing the intractability of NP problems U Arun  arXiv preprint arXiv:2004.01491, 2020 arxiv.org
65 2010 1 RANDOMNESS: FOUR QUESTIONS AND SOME CHALLENGES G Longo, C Palamidessi, T PAUL  Zenil H.(ed. by), Randomnes, 2010 hal.science
66 2008 1 Game-theoretic approaches to randomness: unpredictability and stochasticity. L Bienvenu 2008 theses.hal.science
67 2007 1 A good number of forms fairly beautiful: an exploration of biologically-inspired automated design T Kowaliw 2007 spectrum.library.concordia.ca
68 2006 1 Normale Zahlen C Aistleitner 2006 math.tugraz.at
69 0902 1 New algorithms and lower bounds for sequential-access data compression T Gagie  arXiv preprint arXiv:0902.0133, 2009 arxiv.org
70 2006 4 Два подхода к оценке математики как феномена культуры: Франция и Россия, 1890-1930 гг. Л Грэхэм, ЖМ Кантор  Вопросы истории естествознания и техники, 2006 elibrary.ru
71 2006 1 Aspects of randomness S Figueira 2006 Citeseer
72 2018 0 Algorithmic information distortions and incompressibility in uniform multidimensional networks FS Abrahão, K Wehmuth, H Zenil, A Ziviani  arXiv preprint arXiv …, 2018 arxiv.org
73 2018 0 Algorithmically random generalized graphs and its topological properties FS Abrahão, K Wehmuth, H Zenil, A Ziviani  arXiv, 2018 dml.mathdoc.fr
74 2015 0 ON THE COMPLEXITY OF THE β-EXPANSIONS OF ALGEBRAIC NUMBERS JH EVERTSE 2015 math.u-bordeaux.fr
75 2015 0 An encryption algorithm A Soloi  2015 7th International Conference on Electronics …, 2015 ieeexplore.ieee.org
76 0 Randomnes: five questions and some challenges G Longo, C Palamidessi, P Thierry hal.science
77 2013 0 An Introduction to Ergodic Theory Normal Numbers: We Can't See Them, But They're Everywhere! J Horan 2013 math.uvic.ca
78 2011 0 A Reinterpretation, and New Demonstrations of, the Borel Normal Number Theorem DL Rockwell 2011 search.proquest.com
79 1105 0 What Maxwell's demon could do for you K Svozil  arXiv preprint arXiv:1105.4768, 2011 arxiv.org
80 2013 1 Das Zufallsprinzip. Vom Ereignis zum Gesetz H Kuthan 2013 books.google.com
81 2021 0 Algebralliset luvut M Aaltonen 2021 trepo.tuni.fi
82 2008 0 Randomness and Ergodic Theory: An Algorithmic Point of View CR González 2008 researchspace.auckland.ac.nz
83 2007 0 On the normality of normal numbers D KHOSHNEVISAN 2007 Citeseer
84 2010 1 Nociones de aleatoriedad y transformaciones de cambio de base A Taraciuk 2010 gestion.dc.uba.ar
85 2006 1 On normal numbers D Pellegrino  Proyecciones (Antofagasta), 2006 SciELO Chile
86 2018 0 Méthodes analytiques, probabilistes et dynamiques dans l'étude des systèmes de numération M Madritsch 2018 hal.science
87 2014 0 Cómputo eficiente de números absolutamente normales M Epszteyn 2014 www-2.dc.uba.ar
88 2014 0 Una perspectiva computacional sobre números normales PA Heiber 2014 bibliotecadigital.exactas.uba.ar
89 0 Tesis de Licenciatura LI Cavatorta gestion.dc.uba.ar
90 2006 0 Aspectos de aleatoriedad SD Figueira 2006 bibliotecadigital.exactas.uba.ar
91 2018 4 FS Abrahao, K Wehmuth, H Zenil, A Ziviani 2018 Research report
92 2007 1 SH Khayat  … Department Ferdowsi University of Mashhad, Iran, 2007
93 0 FS ABRAHAO, K WEHMUTH, H ZENIL, A ZIVIANI
94 0 V Becher, O Carton
95 0 C ROJAS
96 2008 0 G LONGO 2008
97 2003 0 JM Borwein, DH Bailey 2003
98 2008 0 ME ASARIN 2008 Royal Holloway

Referencias

# Title Year Source Authors
1 Les probabilite's de'nombrables et leurs applications arithme'tiques, Rend 1909 Circ. Mat. Palermo E. Borel
2 A theory of program size formally identical to information theory 1975 ACM G.J. Chaitin
3 'le'mentaire du the' 1917 Bull. Soc. Math. France M.W. Sierpinski
4 A note on normal numbers 1992 Collected Works of A. M. Turing, Pure Mathematics A. Turing

Figuras